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The excitation of internal gravity waves by fluid intrusions that propagate along the
interface between a uniform upper layer and a uniformly stratified lower layer is
examined by way of laboratory experiments. Intrusions are generated using a simple
lock-release apparatus. Experiments are conducted in which the density gradient of
the uniformly stratified layer, the density jump across the interface and the density
difference between the lock fluid and the uniform upper layer are varied.

In all cases, the fluid intrusions travelled at a constant speed. The forcing imparted
by the generated internal gravity waves did not deform the intrusion head or
significantly retard the intrusion’s rate of forward advance. For a limited range
of density parameters, good agreement was obtained between the experimental data
and the two-layer analytical theory of J. Y. Holyer & H. E. Huppert (J. Fluid Mech.
vol. 100 (1980), pp. 739–767) which provides estimates for the intrusion speed and
depths of penetration into the upper and lower layers. Internal gravity wave excitation
is due to the initial collapse of the lock fluid and the forcing imparted by the head
of the intrusion. Waves are visualized and their amplitudes measured using ‘synthetic
schlieren’.

The vertical flux of horizontal momentum due to internal gravity wave excitation
is related to measurable properties of the fluid intrusion. This analysis suggests that
outflows produced by tall convective storms that travel along the tropopause may
excite non-hydrostatic internal gravity waves in the stratosphere whose momentum
flux, at least during the transient generation time, is comparable to that of waves
generated by topographic forcing.

1. Introduction
Gravity currents (also known as density currents or buoyancy currents) and internal

gravity waves are ubiquitous phenomena in the atmosphere and ocean. The former
arise when fluid of one density propagates horizontally into fluid of another density.
Atmospheric manifestations of this phenomenon include thunderstorm outflows and
sea breeze fronts (Simpson 1982, 1997). Most experimental and theoretical studies of
gravity currents have examined the propagation of dense fluid along a rigid boundary
beneath a uniform ambient (Keulegan 1957; Benjamin 1968; Simpson 1972; Britter &
Simpson 1978; Simpson & Britter 1979; Huppert & Simpson 1980; Klemp, Rotunno &
Skamarock 1994; D’Alessio et al. 1996; Hallworth et al. 1996; Härtel et al. 1997;
Shin, Dalziel & Linden 2004). A gravity current that propagates along an interface
within a stratified fluid we refer to as a fluid intrusion. These have been studied the-
oretically and experimentally by Holyer & Huppert (1980), Britter & Simpson (1981),
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D’Alessio et al. (1997), de Rooij (1999), de Rooij, Linden & Dalziel (1999), Mehta,
Sutherland & Kyba (2002) and Sutherland, Kyba & Flynn (2004).

Internal gravity waves, which propagate within density stratified environments, play
an important role in atmospheric circulation. For example, it is well known that the
breakdown of internal gravity waves imparts a significant drag on the zonal winds
(Lindzen 1981; Kida 1984; Gavrilov & Roble 1994; Becker & Schmitz 2002). Although
the largest proportion of momentum transport by internal gravity waves is associated
with those generated by topographic forcing (Fritts & Nastrom 1992), other dynamic
excitation mechanisms can also result in significant momentum fluxes. In particular,
convective forcing may represent the most important source of atmospheric internal
gravity waves in the southern hemisphere and the tropics (Alexander, Holton &
Durran 1995). Beres, Alexander & Holton (2002) have identified three means by
which convective motion may excite waves (see also Mason & Sykes 1982; Clark,
Hauf & Kuettner 1986; Fovell, Durran & Holton 1992). ‘Quasi-stationary forcing’
describes the generation of internal gravity waves by perturbations to the mean flow
caused by the pressure field of a rising convective element. Because the element thereby
acts as a ‘fluidic’ (i.e. non-rigid) obstacle, this mechanism is also known as the ‘obstacle
effect’. In the absence of a background mean flow, waves may be generated through
the oscillatory deflection to the boundary of a stratified layer owing to the successive
rising and falling of convective eddies. This scenario is similar to the experiments
of Plumb & McEwan (1978) in which boundary deflections were established using
mechanical means. The mechanism is therefore referred to as the ‘mechanical oscillator
effect’. The third means for wave excitation is the ‘deep heating effect’ which
describes the generation of internal gravity waves due to the thermal forcing asso-
ciated with the latent heat release within a convective storm. Internal gravity wave
generation is thus due to fluid expansion; the wave’s vertical wavelength is approxi-
mately twice that of the vertical extent through which heating occurs (Salby & Garcia
1987).

Whereas Clark et al. (1986) determined that a strong wind shear was required for
the generation of strong internal gravity waves, Fovell et al. (1992) found that this
was not the case when considering the deep convection associated with mesoscale
convective storms, even though their analysis did not explicitly consider the ‘deep
heating effect’.

In addition to topographic and convective forcing, atmospheric internal gravity
waves may also be generated by the vortices produced in an unstable parallel shear
flow, a mechanism referred to as ‘shear generation’ (Lindzen 1974; Sutherland,
Caulfield & Peltier 1994; Sutherland 1996; Sutherland & Linden 1998). Qualitatively,
internal gravity waves are anticipated when the stratification of the strongly sheared
region is low compared to that of the surrounding strongly stratified ambient as
characterized by Richardson numbers less than and greater than 1/4, respectively.

Here, we initiate an idealized experimental study examining a novel variation of
the convective and shear mechanisms for wave generation in which stratospheric
internal gravity waves are excited by the propagation of a fluid intrusion along the
tropopause, the boundary separating the weakly stratified troposphere (below) from
the strongly stratified stratosphere (above). As demonstrated in figure 1, examples of
such flows include laterally spreading anvil clouds, propagating high-level rope clouds
that form by detaching from the leading edge of anvil clouds (Simpson 1997) and,
more exotically, laterally spreading volcanic clouds (Rose et al. 2001).

Previous investigations into the generation of internal gravity waves in a uniformly
stratified fluid by density-driven currents fall under two principal categories: those in
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Figure 1. The ascent of a tall anvil cloud. When the mass of hot moist air reaches the
tropopause, it may, under certain conditions, begin to spread laterally, giving rise to a fluid
intrusion that propagates along the interface between a strongly stratified fluid (above) and a
weakly stratified fluid (below).

which wave excitation is due to a bottom-propagating gravity current (Maxworthy
et al. 2002; Ungarish & Huppert 2002) and those in which the current propagates at
some intermediate depth (Schooley 1967; Wu 1969; Schooley & Hughes 1972; Manins
1976; Amen & Maxworthy 1980; Britter & Simpson 1981; Faust & Plate 1984; de
Rooij 1999). In the experiments of Maxworthy et al. (2002), the gravity current was
released using a standard lock-release apparatus. Direct excitation of internal gravity
waves occurred when the current’s velocity was below that of the linear mode-one
long wave in the wave guide, a condition referred to by Maxworthy et al. (2002) as
‘subcritical’ (see also Long 1955). At this point, ‘first-mode waves were formed which
interacted with the head of the advancing gravity current to destroy the original front
and to cause a succession of gravity-current heads’ (Simpson 1982). In other words,
a rhythmic coupling was established that alternately accelerated and decelerated the
gravity current head. By contrast, no such behaviour has been observed in studies
involving a non-stratified ambient for which the gravity current speed is constant
over a horizontal distance of approximately ten lock-lengths (Simpson 1997).

Experiments involving the propagation of a homogeneous mixed region within a
stratified fluid typically ignore boundary effects. Wu (1969) divided the gravitational
collapse of the mixed region into three distinct stages: the ‘initial’ stage, during which
the rate of collapse is constant, the ‘principal’ stage during which the collapse rate
begins to decrease and the ‘final’ stage in which the mixed region becomes wedge-
shaped and propagates so slowly that viscous effects become significant. Internal
gravity waves are generated both above and below the collapsing mixed layer.

Whereas Wu (1969) did not observe a resonant interaction between the intrusion
and the internal gravity waves, such behaviour was noted in the related study of
Amen & Maxworthy (1980), for whom the initial height of the mixed region relative
to the depth of the stratified ambient was notably larger. As in the experiments of
Maxworthy et al. (2002), this interaction resulted in the irregular advance of the
intrusion head.



358 M. R. Flynn and B. R. Sutherland

Lock
release

(a)

Gravity
current

Return
flow of

stratified
fluid

Direct

Indirect

Lock
release

(b)

Gravity
current

Internal
gravity
wave

excitation

Internal
gravity
wave

excitation

Direct

Figure 2. Comparison between the mechanisms of internal gravity wave excitation in the
studies of (a) Wu (1969), Amen & Maxworthy (1980) and Maxworthy et al. (2002) and (b) the
present study.

For both classes of experiment described above, internal gravity wave generation
is due to two factors: direct excitation by the gravity current and indirect excitation
associated with the return flow of stratified fluid that is established by the release of
the lock (see figure 2a).

Experiments performed in the present study are different from those described above
in two fundamental respects. They consider the behaviour of a fluid intrusion in a
two-layer system in which the lower layer is uniformly stratified and the top layer
is uniform in density. As in the investigations of Wu (1969), Amen & Maxworthy
(1980) and Maxworthy et al. (2002), flow is established using a simple lock-release
apparatus. In the present case, however, the lock fluid initially spans only the height
of the uniform layer and the collapse of the mixed region therefore occurs strictly
within non-stratified surroundings. Consequently, the collapse of the lock fluid does
not induce a return flow in the stratified (lower) layer. As indicated in figure 2(b),
internal gravity wave generation is due solely to the direct mechanism: forcing by the
fluid intrusion. Whereas previous experiments are characterized by the appearance
of columnar modes (internal gravity waves of infinite horizontal wavelength that are
associated with a bulk flow of stratified fluid within a closed geometry), these features
are only apparent in the present study when the forcing exerted by the fluid intrusion
on the lower layer is relatively large. The excitation of columnar modes is undesirable
because it effectively changes the mean density and velocity profiles in the region
(Baines 1995).

Although the atmosphere’s potential temperature and velocity profiles are more
complicated than the corresponding background profiles considered in the present
study, the experiments bear some resemblance to the interfacial flow phenomenon
depicted in figure 1. In particular, although the experiments capture only Boussinesq
dynamics, they nonetheless provide an important starting point for assessing the
importance of thunderstorm outflows as sources of internal gravity waves given that
the vertical extent over which wave forcing occurs in the atmospheric circumstance is
small relative to the local scale height.

The paper is organized as follows: § 2 provides an overview of the analytic theory
of Holyer & Huppert (1980) (here in after referred to as HH80) which describes
the propagation of a fluid intrusion between two uniform layers. Simplifications to
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their original equations are derived by employing the Boussinesq approximation. In
addition, the theory of de Rooij et al. (1999), which considers the behaviour of a fluid
intrusion in a two-layer system under more restrictive conditions, will be discussed.
The experimental set-up is summarized in § 3. Section 4 presents a comparison between
the measured intrusion properties and those predicted by HH80. The behaviour
of the internal gravity waves is analysed in § 5. Finally, § 6 considers the application
of the experimental data to the atmospheric flow depicted in figure 1.

2. Theory
The behaviour of an inviscid gravity current propagating into a uniform ambient

of depth hT was considered theoretically by Benjamin (1968). Using conservation of
mass and momentum, he demonstrated that for energy-conserving flows in which
surface tension and mixing can be neglected, the current depth hgc was half the total
fluid depth (hgc = hT /2) and the current speed, vgc, was given by

vgc =
1√
2

√
g′hgc. (2.1)

Here, we represent the reduced gravity by g′ = g(ρgc − ρ0)/ρ00, in which g is the
acceleration due to gravity, ρgc is the gravity current density, ρ0 is the density of the
ambient fluid and, in the Boussinesq approximation, ρ00 is a characteristic reference
density that we take to equal ρ0.

These results were extended by HH80 who derived equations describing the
propagation of a fluid intrusion in a two-layer system consisting of uniform layers for
which the interfacial thickness is vanishingly small. For non-dissipative intrusive flows,
they obtained a coupled system of cubic polynomial equations for r0 and r1, the relative
decrease in depth of the ambient fluid as it moves, respectively, above and below the
intrusion. By invoking the Boussinesq approximation, this system of equations was
simplified by Sutherland et al. (2004) who further derived approximate solutions from
perturbation expansions about ε, measuring the relative density difference between
the intrusion and the average density of the ambient. Explicitly, using the notation
represented in figure 3, they defined

ε =
ρi − ρ̄

ρ1 − ρ0

,

where

ρ̄ =
h1ρ1 + h0ρ0

hT

,

and hT = h1 + h0.
The analysis presented here starts with the coupled polynomial equations (2.4)

and (2.5) of Sutherland, Kyba & Flynn (2004). However, rather than determining
perturbation solutions about ε = 0, here we expand about a small parameter Γ

representing the relative density difference between the intrusion and the upper
layer. This is the relevant parameter for the experiments presented here because in
the majority of our experiments the intrusion propagates with most of its bulk in
the upper (uniform density) layer and with only weak penetration into the lower
(stratified) layer. Thus, increasing Γ corresponds to increasing forcing of internal
waves in the stratified fluid. (In the theory presented below, both layers of the
ambient are assumed to have uniform density; but, if Γ is small, the current structure
and speed should not depend on whether the lower layer is stratified.)
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Figure 3. The propagation of a fluid intrusion of density ρi between uniform layers of
densities ρ0 (above) and ρ1 (below).

We further require that Γ , unlike ε, be independent of the lower-layer depth, which
should be insignificant in cases when the intrusion penetrates only weakly into the
lower layer. We therefore define

Γ =
ρi − ρ0

ρ1 − ρ0

. (2.2)

For intrusions moving along the interface we must have 0<Γ < 1. Alternatively, we
could have defined ζ = Γ − 1/2, in which ζ = (ρi − 〈ρ10〉)/(ρ1 − ρ0) and 〈ρ10〉 =(ρ1 +
ρ0)/2 is the average of the densities on either flank of the interface. The parameter
ζ was first introduced by de Rooij et al. (1999) in their study of intrusions in fluid
with equal upper- and lower-layer depths. Here, we work with Γ because it is a
more suitable perturbation parameter for the cases we are interested in, specifically,
0 � Γ � 1.

We transform from the equations of Sutherland et al. (2004) involving ε to equations
involving Γ using the relation

ε = Γ − h1

hT

.

As Γ → 0, we find r0 = 1/2 and r1 = 1. We therefore find perturbation solutions by
substituting r0 = 1/2 + δ0 and r1 = 1 − δ1 into the coupled cubic polynomial equations
to give

Γ (1 + 2δ0)
2(1 − 2δ0) = 8H1δ1(1 − Γ )(1 − δ1)

2 (2.3)

and

δ0Γ (1 − 2δ0)
2 = 2δ2

1(H1)
2(1 − Γ )(2δ1 − 1), (2.4)

in which H1 = h1/h0.
These equations are perturbed about small Γ by assuming δ0 = Γ δ0

(1) + O(Γ 2) and
δ1 = Γ δ1

(1) + O(Γ 2). Substituting these into (2.3) and (2.4) and matching like powers
of Γ , we thereby determine the heights, hi0 and hi1, of the intrusion above and below
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Figure 4. (a) Intrusion heights hi0, hi1 and hi (normalized by h0) versus Γ for h1 = 2h0 and
(b) hi0 and hi (normalized by h0) versus Γ for h1 = h0. In the intervals over which HH80
predicts non-unique solutions, the physically anticipated solution is denoted by the thick solid
line. First-order perturbation expansions about Γ = 0+ are indicated by the long dashed lines.
(a) H1 = 2. (b) H1 = 1.

the interface, respectively. Relative to the upper-layer ambient depth, h0, we find

Hi0 ≡ hi0

h0

= 1
2

+ 1
32

Γ + O(Γ 2) (2.5)

and

Hi1 ≡ hi1

h0

= 1
8
Γ + O(Γ 2). (2.6)

Thus, for Γ sufficiently small, the total relative intrusion depth is Hi ≡ Hi0 + Hi1 	
1/2 + 5Γ/32.

Figure 4 presents comparisons between the exact results of HH80 and the first-
order perturbation expansions given by (2.5) and (2.6), the latter being represented
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Figure 5. Predicted normalized intrusion velocities as a function of Γ . The thick curves plot
the values in cases with h0 =h1 and h0 � h1, as indicated. In the former case, thin lines are
drawn in the overlap region for values corresponding to non-maximal mass flux (see Sutherland
et al. 2004). The curve labelled ‘Pert.’ is the second-order accurate perturbation approximation
about Γ = 0, the curve labelled ‘B68’ is that predicted by Benjamin (1968), and the curve
labelled ‘RLD99’ is that predicted by de Rooij et al. (1999).

by long-dashed lines. Note that the exact solution of HH80 has three solutions for a
range of Γ . These are discussed in detail by Sutherland et al. (2004) but are irrelevant
to the discussion here because they occur for sufficiently large Γ that they are outside
the range of interest as represented by our perturbation parameter. In the asymmetric
case with H1 = 2 (typical of our experiments) and for Γ � 0.2, the leading-order
perturbation theory gives 0.2% and 21.9% accuracy for Hi0 and Hi1, respectively.
Likewise, in the symmetric case H1 = 1, the perturbed solutions reasonably estimate
the exact behaviour for Γ � 0.2.

The intrusion speed is given generally by

vi = r0

√
2Γ σgh0(1 − r0), (2.7)

in which σ = (ρ1 − ρ0)/ρ00. For small Γ , we find

vi√
σghi

=
√

1
2
Γ

(
1 − 3

16
Γ + O(Γ 2)

)
. (2.8)

Figure 5 compares the leading-order perturbation solutions of (2.8) with the exact
solutions of HH80 in the case with h0 =h1 and h0 � h1. In both cases, the approximate
theory is accurate to within 0.5% of the exact result for Γ � 0.2.

We expect (2.8) should be equivalent to (2.1) in the limit Γ → 0. Indeed, in this
limit vi → vgc, hi → hgc and σΓ g → g′. The correction terms in (2.8) reflect that the
relative speed of the intrusion decreases as it penetrates more deeply into the lower
layer. Figure 5 explicitly compares the formula derived by Benjamin (1968) (the curve
labelled ‘B68’) with our formula for a two-layer fluid.
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Figure 6. (a) Front view of the tank showing the lock-release mechanism by which intrusions
are released along the interfacial layer. Also shown is a schematic representation of the density
profile. For the purposes of our subsequent analysis, we place the origin of an (x, z) coordinate
system at the point denoted by O . (b) Side view of the tank showing the relative positions of
the grid of black and white lines, the tank and the CCD camera. (Figures not to scale.)

Also shown in figure 5 is a curve (denoted by ‘RLD99’) due to the analytic theory
of de Rooij et al. (1999). Their model represents a simplification of HH80 in that
they assume both layers are infinite in extent and hence effectively equal in depth.
Their solution, which is applicable to both energy-conserving and dissipative currents,
expresses vi as an explicit function of ζ :

vi√
σghi

= 1
2
Fr

√
ρ0

ρi

√
1 − 4ζ 2 	 1

2
Fr

√
1 − 4ζ 2 ≡ Fr

√
Γ (1 − Γ ). (2.9)

Here the Froude number, Fr, is defined by requiring that the predicted solution
approach that given by Benjamin (1968) and HH80 in the limit Γ → 0+. Specifically,
we set Fr = 1/

√
2. As indicated by figure 5, the solution of de Rooij et al. (1999) is

approximated well by (2.8) for Γ � 0.2.

3. Experimental methods
Experiments were performed in a glass tank of length 197.1 cm, width 19.9 cm wide

and height 48.5 cm (see figure 6). A platform (height =30 cm; length 19.6 cm) that
spanned the width of the tank was installed at one end. The non-uniform density
profile was established using a two-step process. First, a 30.0 cm deep layer of
uniformly salt stratified fluid was added to the tank using the ‘double bucket’ technique
(Oster 1965). Thus, the top of the stratified fluid was at the level of the top of the
platform. A 15.0 cm deep layer of fresh or slightly saline water was then layered on
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top of the stratified fluid by trickling it through a sponge float. A traversing conduc-
tivity probe was used to measure the resulting density profile. The initial interfacial
thickness was approximately 1 cm.

After filling the tank, a 0.4 cm thick gate was inserted between a pair of vertical
glass guides to the level of the platform. Salt and a small amount of dye were then
added to the lock fluid, after which it was made homogeneous by vigorous mixing
for a period of approximately 15 s. The resulting fluid had a density ρi .

In total, 39 experimental runs were performed in which three parameters were
varied: the strength of stratification of the lower layer, as measured by the squared
buoyancy frequency, N2; the relative density jump, σ , across the interface; and the
relative density of the intrusion as measured by σi0 = (ρi − ρ0)/ρ00 ≡ σΓ . Note that
our definition of σ is the same as that for a two-layer fluid with uniform-density upper
and lower layers. Here, however, ρ1 is strictly taken to be the density immediately
below the interface between the uniform and stratified layer.

Experiments were performed with N2 ranging from 0.37 s−2 to 1.21 s−2 (± 0.04 s−2),
σ ranging from 0.0015 to 0.0102 (± 0.0001) and σi0 ranging from 0.0005 to 0.0023
(± 0.0001). With these values, we find that the corresponding intrusion depth and
speeds give typical Reynolds numbers of Re 	 1500. As such, it is reasonable to
neglect the role of viscosity in the dynamics of the fluid intrusion.

Our interest is in the response of the stratified layer to disturbances caused by
intrusions for which the depth of penetration into the stratified (lower) layer is
relatively small because this is most representative of the atmospheric flow depicted
in figure 1 (Cotton & Anthes 1989). Hence, in the majority of experiments, ρi < 〈ρ10〉
(i.e. σi0 <σ/2). In this density regime, the forcing imparted by the fluid intrusion on
the lower layer is insufficient to induce a significant bulk motion of stratified fluid. As
described in § 1, such flows are undesirable because they may excite columnar modes.

Runs began by rapidly removing the gate from the tank. The lock fluid then
collapsed to form an intrusion that propagated along (or in three extreme cases
immediately below) the interfacial layer. The purpose of the platform was two-fold.
It inhibited the vertical motion of the fluid intrusion during the initial collapse stage
and thereby reduced the magnitude of the transient impulse delivered to the stratified
layer. In addition, because the lock fluid extended only to the depth of the platform,
and hence to the depth of the interface between the uniform and stratified fluid,
no mean flow was induced as a result of stratified ambient fluid replenishing the
collapsed lock fluid; only the unstratified ambient developed such a return flow.

The resulting fluid motions were recorded to video tape using a CCD camera
located Lc = 400 cm in front of the tank. The zoom on the camera was set such that
the field of view spanned a horizontal distance Lw = 87 cm with the gate at the left
extremity of the field of view. The camera was connected to a computer running
DigImage (Dalziel 1992), a robust image-processing program.

Experiments were run three-at-a-time. In other words, three intrusions, of pro-
gressively larger densities, were released in sequence where in each case, sufficient
time (∼ 10 min) was allowed between runs to permit the decay of the internal gravity
waves in the stratified fluid. Although mixing and deposition of lock fluid at the
interface resulted in successively broader interfacial thicknesses between runs, separate
experiments showed that the depth of this mixed region was sufficiently smaller than
the intrusion depth that this variation in the density profile had negligible effect.

The internal gravity waves that appeared in the stratified (lower) layer were
visualized using ‘synthetic schlieren’, the properties of which are described in detail in
Sutherland et al. (1999). The technique exploits variations in the index of refraction
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with salinity in order to visualize and measure the deflection of light rays as they
travel through stratified fluid of spatially and temporally varying density gradient. In
the present case, the internal gravity waves were visualized by measuring the distor-
tion of an image of evenly spaced 0.5 cm thick horizontal black and white lines placed
Ls = 27.9 cm behind the tank (see figure 6b). Assuming that the wave field is span-
wise uniform (a reasonable approximation given the symmetry of the lock-release
mechanism), it is possible to relate the change in the squared buoyancy frequency,
�N2, to the apparent vertical displacement of the lines, �z, which under typical
conditions, can be measured to within 0.002 cm. Explicitly,

�N 2 	 −α�z, (3.1)

where α depends upon the refractive indices of air, water and glass as well as Ls , the
inside width of the tank, Lg , and the tank wall thickness, LG (see figure 6b). For the
present study, α =6.4 cm−1 s−2. The resulting change in the vertical density gradient
is then expressed in terms of the change in the squared buoyancy frequency, �N2.

In addition to measuring the apparent displacement of a point from its original
position, we may also compute the displacement that occurs during a short time
interval, �t (typically 0.1 s to 0.2 s). Hence, it is possible to estimate the time derivative
of the �N2 field, N 2

t , from

N 2
t 	 −α�z/�t. (3.2)

Internal gravity waves were observed in all cases except the three experiments
with the weakest stratification for which N 2 = 0.37 s−2. For these three experimental
runs, the absence of observed waves is primarily an artefact of the synthetic
schlieren technique: for a wave of fixed amplitude and spatial structure, the apparent
displacement of the horizontal lines, �z, is proportional to N 3. Hence, the signal from
internal gravity waves can be detected and enhanced above noise levels only if N is
sufficiently large.

4. Fluid intrusions
4.1. Qualitative observations

Gravity currents propagating in stratified media are subject to interactions with
internal gravity waves whenever vi is less than approximately vLW =NhT /π, the
velocity of the longest linear mode-one wave that can exist in a uniformly stratified
fluid of depth hT (Maxworthy et al. 2002). Indeed, the simple calculation in
Appendix A shows that symmetric intrusions in uniformly stratified fluid typically
exist in a subcritical regime, in which they excite internal waves. (In contrast, bottom-
propagating currents in a uniformly stratified ambient are supercritical if their density
is sufficiently large, as can be done without restriction in theory.) Generally speaking,
however, strong interactions are noted only when the magnitude of forcing is large.
For example, in the study of Amen & Maxworthy (1980), (hi/hT )t=0 � 0.40 and a
strong internal gravity wave-intrusion interaction was observed. By contrast, no such
interaction developed in the experiments of Wu (1969) for whom (hi/hT )t=0 = 0.25.
In the present study, we primarily consider fluid intrusions with 0 � Γ � 1 and hence
whose relative depth of penetration into the stratified layer, hi1/h1, is small. This is
demonstrated for example by figure 7 which shows a representative image of the fluid
intrusion head. Consistent with the analysis of Faust & Plate (1984) and de Rooij
(1999), we find that no rhythmic coupling between the intrusion and the internal
gravity waves occurs and that over the domain of interest (0 � x � Lw), the intrusion
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Figure 7. Image of the intrusion head for the experiment in which N2 = 0.67 s−2, σ = 0.0038
and σi0 = 0.0006 (Γ = 0.16). The interface corresponds to the line z =0 cm. The distances hi0,
hi1 and li are as indicated.

behaves as a slumping gravity current; vi and hi are approximately constant. In all
cases, experiments are terminated before the intrusion’s motion becomes self-similar.

The image shown in figure 7 is similar to figure 3(c) of Rottman & Simpson (1983).
In particular, we note that when the return flow of non-stratified fluid reaches the
tank wall, its reflection generates a forward-propagating rear bore that travels behind
the intrusion head. Because the lock fluid does not extend into the stratified (lower)
layer initially, no rear bore is excited along the underside of the intrusion (e.g. see
Moodie 2002), though in some experiments undulating waves are evident along the
lower interface of the intrusion.

4.2. Determination of vi , hi0, hi1, li and ωi

As described in Mehta, Sutherland & Kyba (2002), vi was determined from horizontal
time series of the digitized experimental images. Values for hi0 and hi1 were found from
time series constructed along the vertical slice x 	 Ll = 18.6 cm. Measurements were
made roughly half-way between the leading and trailing edges of the intrusion head.
In those experiments in which undular patterns were observed along the underside of
the intrusion, hi1 was measured half-way between an undular peak and an undular
trough. For the intrusion depicted in figure 7, for example, hi0 = 5.7 ± 0.2 cm whereas
hi1 = 1.0 ± 0.2 cm.

Vertical time series along x 	 Ll = 18.6 cm were also employed in determining li ,
the horizontal extent of the intrusion head. More precisely, li corresponds to the dis-
tance between the intrusion’s typically sharp tip and the projected location at which
the height of the intrusion head is equal to the height of the trailing tail. For example,
figure 7 shows an intrusion for which li = 37.2 ± 5.0 cm. Errors associated with li are
due to the development of the rear bore and billows along the top and back of the
intrusion head, both of which make it difficult to determine the precise location at
which the trailing tail begins. From li , we can estimate characteristic values for ωi ,
the frequency associated with the forcing imparted by the intrusion. Explicitly,

ωi = 2π
vi

li
. (4.1)
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4.3. Flow instabilities

Figure 7 shows the development of a series of undular patterns along the underside
of the intrusion head. These undulations were noted in 19 of the 39 trials and are
believed to result from a weak Kelvin–Helmholtz instability. They were also noted
in the studies of Sutherland et al. (2004), who considered the propagation of a fluid
intrusion between uniform layers, and Dugan, Warn-Varnas & Piacsek (1976), who
developed a numerical model describing the gravitational collapse of a mixed region
in a stratified ambient. Generally speaking, the undulations were observed in runs
for which σ was relatively small and σi0 was relatively large. Because vi increases
with ρi , the stress imparted by the intrusion on the fluid below the interface and the
undulation amplitude, Au, are expected to increase with σi0. Conversely, as σ − σi0

increases, a larger amount of energy is required to lift fluid at or near the interfacial
layer. Therefore, Au is expected to decrease with increasing σ in circumstances where
ρi < 〈ρ10〉.

These observations can be formalized by computing the interfacial Richardson
number, Ri, defined as (see equation (1) of Wu 1969)

Ri =
1

16

(
�ρ

ρ00

) (
ghi

v2
i

)
. (4.2)

Along the lower flank of the intrusion, �ρ/ρ00 = σ − σi0 whereas along the upper
flank, �ρ/ρ00 = σi0. Generally speaking, undulations are observed along the intrusion’s
lower flank when Ri is less than 1/4. Because the density difference is smaller between
the intrusion and ambient across the upper flank, the instability may grow to such a
large amplitude that it overturns, forming billows.

4.4. Comparison with Holyer & Huppert (1980)

Figure 8 shows measured values of Hi0 and Hi1 as a function of Γ . In 36 of 39
experiments, ρi < ρ1, and so Γ < 1. In three experiments, however, the intrusion was
sufficiently dense that its bulk propagated below the interface and well within the
stratified lower-layer ambient. We plot results for these experiments with values Γ = 1.

For comparison, figure 8 also shows theoretical curves determined from HH80’s
coupled system of cubic polynomials for the case where h0 � h1. Also presented are
the first-order perturbation expansions given by (2.5) and (2.6).

Experimental values for Hi0 are effectively independent of Γ and N 2; the theory of
HH80 moderately overpredicts the observed data. Their model provides a reasonable,
albeit somewhat depressed, estimate of the trend exhibited by the experimental
data shown in figure 8(b) for Γ � 0.75. Theoretical values typically underpredict
experimental values by 25 to 50%. For relatively dense intrusions (Γ � 0.75), the
depth of penetration becomes dependent on the strength of stratification: strongly
stratified layers inhibit the vertical motion of the intrusion more effectively than
those that are weakly stratified. These results suggest that, insofar as the dynamics
of the intrusion are concerned, the stratification of the lower layer is not particularly
important when Γ � 0.75. Thereafter, hi1 becomes dependent on N2 and the dynamics
influencing the intrusion’s motion are more complicated than those considered by
HH80. This observation is consistent with the analysis of Faust & Plate (1984) who
considered the propagation of a fluid intrusion within a uniformly stratified ambient
and who likewise found that two-layer theory poorly predicts their propagation.

The normalized velocity is shown as function of Γ in figure 9(a). Consistent with
the results demonstrated in figure 8(b), the experimental data show reasonably good
agreement with HH80’s theory for Γ � 0.75. Little variation of vi/

√
σghi with N2
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Figure 8. Normalized depth of penetration into the (a) upper and (b) lower layers. Data
point types are , N2 = 0.37 s−2; �, N2 	 0.67 s−2; ∗, N2 = 0.92 s−2; �, N2 	 1.17 s−2. The solid
and long dashed lines, respectively, indicate the full solutions predicted by HH80 and the
first-order perturbation theory approximation to these solutions. The error bars denote the
typical measurement uncertainty.

is observed; within experimental error, vi is a function of Γ alone. Explicitly, from
figure 9(b), we find that

vi√
σghi

∝ Γ 0.32±0.02, Γ � 0.75. (4.3)

The strength of the agreement between the experimental results and the two-layer
model of HH80 suggests that the excitation of internal gravity waves does not extract
a significant portion of the intrusion’s horizontal momentum. This result is consistent
with the numerical analysis of Ungarish & Huppert (2002) who, in modelling the
slumping stage of the bottom-propagating gravity current experiments by Maxworthy
et al. (2002), showed that internal waves extracted considerably less potential energy
than the gravity current. In contrast, de Rooij (1999), observed significant interactions
between symmetric intrusions in stratified fluids and the internal waves they generated,
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Figure 9. (a) Normalized intrusion velocity as a function of Γ . Data point and line types
are as indicated in figure 8. The error bar denotes the typical measurement uncertainty.
(b) Log–log plot of the same data, but plotted only for those experiments with Γ � 0.75. The
slope of the (vertically offset) best-fit line is indicated.

estimating that energy extraction by waves in a typical experiment resulted in a 71%
decrease in the intrusion speed. Waves are not so energetic in our study because the
intrusion’s depth of penetration into the stratified layer is initially zero and typically
remains small throughout an experimental run.

We observe significant excitation of columnar modes only when Γ � 0.75. In these
cases, the character of the intrusion changes and the agreement between theory and
experiment is poor for two reasons. First, the intrusion penetrates more deeply into
the lower layer, and therefore its speed is dependent upon the value of N2 and not
just ρ1. Second, columnar modes are larger amplitude and so interact more strongly
with the intrusion in a way that retards its progress. Unfortunately, the experimental
apparatus employed in this study is not well suited to distinguishing the relative
importance of these two effects.
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5. Internal gravity waves
5.1. Qualitative observations

Time series of the N 2
t field were constructed along 15 equally spaced columns

ranging between x 	 10 cm and 35 cm to the right of the gate. For x � 35 cm, upward
propagating internal gravity waves reflecting from the bottom of the tank significantly
interfered with the downward propagating waves. The time series were Fourier filtered
to remove noise due to signal degradation and high-frequency thermal fluctuations in
the air space between the camera and the tank.

Figure 10 shows a composite vertical time series along the vertical slice x = 18.4 cm
	 Ll for a particular experimental run. The shear forces exerted by the fluid
intrusion generate a region of intense isopycnal distortion immediately below the
intrusion head. The internal gravity waves that appear below this region are
relatively regular in spatial/temporal structure. The wave amplitude decreases with
vertical distance from the wave source owing to the combined effects of viscous
attenuation and wave dispersion. Because the intrusion speed is approximately
constant, figure 10 is roughly equivalent to a ‘snapshot’ image with a horizontal
dimension as indicated. In performing the Galilean translation from t to x, we
apply vi = 2.2 cm s−1, not vigw = ω/kx =3.0 cm s−1 in which ω and kx represent
the characteristic internal gravity wave frequency and horizontal wavenumber,
respectively. Because the speeds of wave and intrusion propagation are not equal,
figure 10 cannot be regarded as a ‘true’ snapshot image. Nonetheless, it suggests
that there is a correlation between the horizontal length scale of the internal gravity
waves and the head of the fluid intrusion. This idea is explored in more detail
in § 5.3.
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Figure 11. (a) Vertical time series of the N2
t field (see also figure 10). (b) The unsmoothed

average power spectrum. (c) The ω profile corresponding to (b). The dashed-and-dotted line
denotes the unsmoothed profile whereas the solid line denotes the smoothed profile. In both
(b) and (c), the N value (N = 1.08 s−1) for this particular experimental run is indicated by the
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5.2. Determination of ω, kx and Aξ

Estimates of ω and kx were obtained by applying a Fourier analysis similar to
that described in Dohan & Sutherland (2003). Consider for example figure 11(a),
in which the image from figure 10 is reproduced over the truncated vertical range
−25 � z � − 5 cm. The spectrum (in ω − kz space) corresponding to this image was
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averaged with the spectra from the 14 other vertical time series from which the
arithmetic mean spectrum shown in figure 11(b) was obtained. The ω profile depicted
in figure 11(c) was computed by summing over kz in the average spectrum. This profile
was subsequently smoothed using a Gaussian smoothing procedure that employed a
bin size of 0.1 s−1. Although the smoothing routine changes the profile’s peak value,
it does not significantly alter the location of the maximum, which in the present case
appears at ω 	 0.65 s−1. We consider this the characteristic value of ω for the internal
gravity wave field generated in this particular case.

We did not compute values for kz from figure 11(b) because the vertical scale
of the internal gravity waves was comparable with the vertical extent of the field
of view. Consequently, horizontal time series of the N 2

t field were reconstructed by
combining data from 27 equally spaced vertical time series ranging from x 	 5 cm to
x 	 75 cm. Estimates of kx were derived by computing the associated power spectrum
(in kx −ω space) then averaging this spectrum over ω (see figure 12a–c). The kx profile
was subsequently smoothed using a Gaussian smoothing procedure having a bin size
of 0.05 cm−1. Although characteristic values for ω could be determined from power
spectra such as that shown in figure 12(b), these estimates would be less reliable
than those derived directly from the vertical time series owing to the additional step
associated with the reconstruction of the horizontal time series from the vertical time
series. In addition, because the wave envelope is narrower in figure 12(a) as compared
to figure 11(a), the peaks in the corresponding power spectrum are less pronounced.

Knowing N , ω and kx , values for kz and Θ = cos−1(ω/N ), the theoretical angle
which lines of constant phase form with respect to the vertical, were determined using
the dispersion relation for internal gravity waves (see e.g. Lighthill 1978). Consistent
with the study of Wu (1969), we observe some evolution of the internal gravity wave
field over the course of a particular experiment as characterized by an increase in Θ

with x. We are primarily interested in the behaviour of the internal gravity wave field
in the relatively brief period immediately following the initial transient collapse of the
lock fluid during which wave reflection off the bottom of the tank can be neglected.
Hence, we consider the waves to be represented well by characteristic values for ω and
kx . In particular, the Fourier analysis technique described above is robust in that it is
insensitive to the contribution of transient internal gravity waves excited during the
initial collapse stage in which lock fluid of density ρi overshoots its point of neutral
density and pushes into the stratified layer. For example, if in figure 11(b) the average
power spectrum included only those vertical time series for which x 	 19 cm to 35 cm,
we would find that ω 	 0.61 s−1. This result is within 6% of the value determined
from figure 11(c).

More caution is required, however, when considering the wave amplitude, AN2
t
,

which is determined from the vertical time series of the N 2
t field. Explicitly, AN2

t

is measured by computing �I , the maximum difference in pixel intensity between
an adjacent wave trough and wave crest. The wave amplitude is then computed as
follows

AN2
t

=
�I

�IM

ÂN2
t
,

where �IM = 512 and ÂN2
t

represents the threshold amplitude. For example, in
generating figure 10, a threshold amplitude of ÂN2

t
= 0.3 s−3 is employed. Significant

variability in AN2
t

exists near the lock-release point, indicating that the measurement
technique is sensitive to the forcing of the stratified layer during the initial collapse
stage. As this transient signature decays, however, the measured value for AN2

t
obtains
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Figure 12. (a) Time series of the N2
t field along the horizontal slice z/hi1 = − 2.0 for the

experimental run described in figures 10 and 11. (b) The power spectrum corresponding to (a).
(c) The kx profiles as derived from (b). Line types are as indicated in figure 11c.

a more or less constant value subject to variations of approximately 20%. As such,
characteristic values for AN2

t
were determined from time series corresponding to

x 	 Ll = 18.6 cm. Furthermore, because the wave amplitude decreases as the wave
packet propagates downwards, AN2

t
was measured just below the region of intense

isopycnal distortion where the amplitudes were close to their largest values.
Once a characteristic value for AN2

t
is determined, we estimate the vertical

displacement amplitude, Aξ , by assuming small-amplitude Boussinesq plane waves
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Figure 13. (a) Normalized amplitude of the vertical displacement field as a function of Γ .
Data point types are �, N2 	 0.67 s−2; ∗, N2 = 0.92 s−2; �, N2 	 1.17 s−2. The error bar denotes
the typical uncertainty in the measurement of Aξ/λx . (b) Log–log plot of the same data but
plotted only for those experiments with Γ � 0.75. The slope of the (vertically offset) best-fit
line is indicated.

in a uniformly stratified (Sutherland et al. 1999):

Aξ =
AN2

t

kzωN2
. (5.1)

5.3. Wave excitation

The generation of internal gravity waves is due primarily to two factors: the initial
collapse of the lock fluid and the forcing imparted by the head of the fluid intrusion
as it propagates along the interface. Here, focus is directed only to the latter, which
represents the dominant mechanism of wave generation beyond x 	 Ll .

Figure 13(a) shows the variation of Aξ/λx with Γ . There exists a relatively large
degree of error associated with the measurement of Aξ , due primarily to the high
degree of background noise in the wave field (see e.g. figure 10). Consistent with the
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results of figure 8(b), however, a positive correlation between Aξ/λx and Γ is noted for
Γ � 0.75: heavier intrusions penetrate more deeply into the stratified layer and result
in larger deflections to the isopycnal surfaces. This in turn yields larger-amplitude
internal gravity waves. Although the large degree of scatter makes it difficult to
determine the precise relation between Aξ/λx and Γ , figure 9(b) suggests that

Aξ

λx

∝ Γ 0.37±0.06, Γ � 0.75. (5.2)

When Γ � 0.75, Aξ/λx also depends on N2 as a result of non-negligible interactions
between the intrusion, which penetrates well below the interface, and columnar mode
disturbances in the stratified lower layer.

The variation of observed wavenumber, kx , with forcing wavenumber, 2π/li , is
shown in figure 14(a). Consistent with the interpretation of figure 10 as a snapshot
image, the collapse of the experimental data suggests that there is a direct correlation
between the scale of the intrusion head and that of the internal gravity waves it
generates. Explicitly,

kx = C
2π

li
, (5.3)

where C = 1.32 ± 0.07.
It is less clear that the internal gravity wave frequency is set by the frequency at

which the fluid intrusion forces the stratified layer. Figure 14(b) plots the relative
wave frequency, ω/N , against the relative forcing frequency, ωi/N . One of the dashed
lines superimposed on this plot indicates where ω = ωi . Obviously, waves are not
directly excited by the intrusion because, despite the fact that the forcing frequency
lies below the buoyancy frequency, in no experiments do the wave frequencies match
the intrusion frequency. We might suppose that superharmonic waves are instead
excited, hence we also plot the dashed line ω = 2ωi . Though this line passes through
the data, there is considerable scatter about it in excess of the typical measurement
variability.

As an alternative explanation, consider figure 15 which shows Aξ/λx as a function
of Θ and indicates that the most pronounced internal gravity waves propagate within
a relatively narrow band of angles to the vertical, Θ , ranging between 41◦ and 64◦.
Taken together, figures 14(a) and 15 imply that for internal gravity waves generated
by the head of an intrusion, the horizontal wavelength is determined by the size of
the intrusion head whereas the frequency of propagation is established relative to the
buoyancy frequency such that Θ 	 53◦ ± 11◦.

This narrow frequency range has been observed in a variety of other experimental
studies. In his study of wave excitation by the gravitational collapse of a mixed
region in uniformly stratified surroundings, Wu (1969) found that the wave energy
spectrum was sharply peaked about Θ 	 37◦. Our results are in better agreement
with the studies of Linden (1975) and Dohan & Sutherland (2003), who examined
waves generated beneath a turbulent mixed layer in mixing-box experiments. By
observing perturbations to suspended aluminium particles, Linden estimated the
dominant waves propagated at an angle of 55◦. Using Fourier transform analyses of
digitized time series images, Dohan & Sutherland found that waves propagated in a
range of angles: 42◦ � Θ � 55◦. Wave propagation in this range was also noted by
Sutherland & Linden (1998) in their study of stratified flow over a thin barrier. A
summary of the above results is presented in table 1.
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Figure 14. (a) Normalized horizontal wavenumber of the internal gravity waves versus the
normalized inverse horizontal extent of the intrusion head. The dashed line indicates where
kx = 2π/li . (b) Internal gravity wave frequency as a function of the frequency of the forcing
imparted by the head of the intrusion. The dashed lines indicate the lines ω = ωi and ω = 2ωi ,
as indicated. In both cases, data point types are as indicated in figure 13; the error bars denote
the typical measurement uncertainty.

Possible reasons for this frequency selection were discussed by Dohan & Sutherland
(2003). They noted that waves with fixed amplitude and horizontal wavenumber have
the greatest vertical flux of horizontal momentum if their frequency ω = N/

√
2, that

is, if Θ = 45◦. Thus, waves of this frequency extract momentum most efficiently from
the source and so have the most significant feedback on the generation region.

5.4. Influence of lower undulations

Figure 16 shows ω/N as a function of the normalized frequency, ωu/N , associated
with undulations on the bottom flank of the intrusion head. The plot indicates that
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Mechanism of internal gravity
Study wave excitation Θ

Wu (1969) Intrusive gravity current 	 37◦

Linden (1975) Turbulence (no mean flow) 	 55◦

Sutherland & Linden (1998) Turbulent shear flow 45.9◦ to 59.9◦

Dohan & Sutherland (2003) Turbulence (no mean flow) 42◦ to 55◦

Present study Intrusive gravity current 41◦ to 64◦

Table 1. Characteristic angle of wave propagation in five studies involving the dynamic
generation of internal gravity waves.

in the vast majority of cases the undulations forced the stratified fluid at frequencies
in excess of N . Furthermore, figure 16 demonstrates that ω is not a multiple of ωu.
These observations suggest that although the forcing imparted by the intrusion onto
the interfacial layer results in periodic Kelvin–Helmholtz disturbances, these features
are not primarily responsible for propagating internal wave excitation.

6. Discussion and conclusions
Experiments have been performed in which a fluid intrusion is released along the

interface between a uniform fluid (above) and a uniformly stratified fluid (below) using
a simple lock-release apparatus. Because no return flow of stratified fluid is established
by releasing the lock, the generation of internal gravity waves in the stratified fluid is
due solely to deflections caused by the fluid intrusion. Unlike the observations made
in the related studies of Amen & Maxworthy (1980) and Maxworthy et al. (2002),
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Figure 16. Normalized frequency of the internal gravity waves, ω, as a function of the
normalized undulation frequency, ωu. Data point types are as indicated in figure 13. The error
bars denote the typical measurement uncertainty.

the intrusion’s speed of propagation is essentially constant; no rhythmic interaction
is established between the intrusion and the internal gravity waves.

As well as providing insight into the exact solutions of HH80, we have presented
perturbation theory results in part to demonstrate the departure of the behaviour
of an intrusion from that of a bottom-propagating current as the intrusion’s density
increases. We find that leading-order terms give estimates accurate to within 50% or
better for hi0, hi1 and vi even when Γ is as large as 3/4. For larger Γ , the intrusion’s
behaviour is characterized by a dependence on N 2 and interactions with columnar
modes. Such dynamics are more complex than those considered in HH80’s two-layer
model.

This study is motivated by a desire to assess the ability of thunderstorm outflows
that propagate along the tropopause (hereinafter referred to as interfacial outflows)
to excite internal gravity waves in the stratosphere. In the present set of experiments,
the intrusion’s plane of propagation lies above the stratified layer. The Boussinesq
approximation suggests, however, that dynamically equivalent results would be
obtained if, as in the atmosphere, the stratified layer were forced from below. The
Boussinesq approximation is applicable because the dynamics we are interested in
occur on scales well below the scale-height of the atmosphere near the tropopause
(Spiegel & Veronis 1960).

As well as having non-zero mean horizontal flows, the effective density profile of
the real atmosphere is far more complicated than that considered in the present set of
experiments. In particular, although a density ‘step’ of magnitude σρ00 was introduced
between the upper and lower layers so as to minimize columnar mode excitation,
the definition of σ is ambiguous in an atmospheric context (see e.g. figure 1(b) of
Birner, Dörnbrack & Schumann 2002). Furthermore, because of the complexity of
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Figure 17. Log–log plot of the normalized momentum flux as a function of the normalized
intrusion velocity for Γ � 0.75. The slope of the (vertically offset) best-fit line is indicated.

convective storm systems, interfacial outflows rarely have the appearance of a simple
fluid intrusion. The precise definitions of li and hi are therefore also ambiguous in
many circumstances. Consequently, the results described below are intended only
to provide crude estimates of the wave momentum flux associated with interfacial
outflows. Further study is required to confirm the applicability of the present study
to real atmospheric flows.

The characteristic period, T , of waves generated by interfacial outflows can be
estimated by combining the results of table 1 with the dispersion relation for internal
gravity waves (see e.g. Lighthill 1978). Taking N 	 0.02 s−1 for the stratosphere
(Birner et al. 2002), the wave period is T 	 9 min. Such high-frequency waves are
known to carry a disproportionate share of the internal gravity wave momentum flux
(Alexander & Pfister 1995; Dewan et al. 1998).

To estimate the momentum flux associated with wave generation by interfacial
outflows, we seek an equation that relates ρ00 〈u′w′〉 to those properties of the
intrusion that are directly measurable: vi , hi and li . Explicitly, for Γ � 0.75, the
collapse of the data shown in figure 17 suggests that:

〈u′w′〉
(Nli)2

= 10−3.7±0.3

(
vi√
σghi

)2.9±0.6

. (6.1)

We assume that li =500 m, a representative scale for the head of an interfacial
outflow (e.g. as visualized by a high-level rope cloud). For the range of normalized
velocities corresponding to Γ � 0.75 (see figure 9), (6.1) predicts average values for
ρ00 〈u′w′〉 of between 0.2 N m−2 and 3 Nm−2 depending on the values chosen for the
empirical constants. By contrast, for topographically generated waves, average values
for ρ00 〈u′w′〉 typically range between 0.1 N m−2 and 1.0 N m−2 (e.g. see table 1 of
Palmer, Shutts & Swinbank 1986).
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Figure 18. The propagation of a symmetric fluid intrusion in stratified surroundings. The
density profile is indicated by the thick solid line.

The fact that the momentum flux associated with interfacial outflows is comparable
to that due to topographic forcing is somewhat surprising. Whereas flow over
mountains provides a spatially broad and near-continuous source of internal gravity
waves, however, large-scale convective events occur sporadically, particularly in the
extra-tropics. Furthermore, not all convective storms are of sufficient height to reach
the tropopause. Because the stratification of the troposphere is relatively weak,
outflows that travel below the tropopause are probably less effective at exciting
internal gravity waves in the stratosphere. Taken together, these results suggest that
in comparison with topographic forcing, wave excitation by interfacial outflows results
globally in a smaller total vertical flux of horizontal momentum in the stratosphere.
Locally, however, these may constitute an important source of stratospheric internal
gravity waves over the tropical oceans.
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Atmospheric Science. The authors would like to thank K. Yewchuck for her assistance
in taking the photograph shown in figure 7.

Appendix A. Symmetric intrusion-internal wave coupling
Here, we assess theoretically under what conditions a symmetric intrusion can

excite internal waves in a uniformly stratified fluid. By ‘symmetric’ we mean that the
intrusion propagates at mid-depth with density equal to the density of the ambient at
mid-depth. This circumstance has been studied experimentally by Wu (1969), Manins
(1976), Amen & Maxworthy (1980).

Figure 18 shows a symmetric fluid intrusion of depth hi and density ρi propagating
into a uniformly stratified ambient of depth hT . As discussed in Maxworthy et al.
(2002), the internal gravity waves that are excited by the intrusion can propagate no
faster than the linear mode-one long wave whose velocity is given by

vLW =
NhT

π
. (A 1)
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We compare this with the speed, vi , of an intrusive gravity current by adapting the
theory of Benjamin (1968) to a two-layer fluid. We assume the speed is controlled
by the density jump, �ρ, across the interface between the ambient and the intrusion
head at its widest point, where it has depth hi . Otherwise, we ignore the effect of the
ambient stratification. Thus, in the Boussinesq approximation,

vi = Fr

√(
�ρ

ρ00

)
ghi, (A 2)

where ρ00 is a standard reference density and the Froude number, Fr, is an order
unity quantity that depends on the depth of the intrusion relative to the total depth
of the domain.

Though isopycnal surfaces are compressed by the passage of the intrusion, to first
order, we can approximate the density jump, �ρ, by the change in the ambient
stratification across the half-depth of the current:

�ρ 	 − 1
2
ρ ′(z)hi. (A 3)

The intrusion speed is therefore

vi 	 Fr√
2
(Nhi) (A 4)

Comparing this result with (A 1), we find the intrusion speed is faster than the
fastest internal wave speed only if (Fr/21/2)(Nhi) > vLW = NhT /π. That is, the system
is supercritical if the Froude number exceeds (21/2/π)hT /hi .

In typical circumstances, hT � hi and so, the Froude number being order unity,
symmetric intrusions propagate as subcritical disturbances that excite internal waves.
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